$\qquad$
$\qquad$

## Lesson 7.5 Real-World Problems: Algebraic Expressions

## Solve. Show your work.

## Example

Andy has 5y dollars. Scott has $\$ 12$ more than Andy. Jacob has $2 y$ dollars less than Scott.
a) Find how much money Scott has in terms of $y$.


Scott has $\quad(5 y+12)$ dollars.
b) Find how much money Jacob has in terms of $y$.


$$
\begin{aligned}
\frac{5 y+12}{2 y}-\frac{2 y}{} & =\frac{5 y-2 y}{3 y+12}+\cdots
\end{aligned}
$$

Jacob has $(3 y+12)$ dollars.
c) If $y=6$, how much money does Jacob have?

When $y=6,3 y+12=3 \cdot 6+12$

$$
\begin{aligned}
& =18+12 \\
& =30
\end{aligned}
$$

Jacob has \$ 30

Name: $\qquad$ Date: $\qquad$

1. The figure shows a rectangle with a width of $2 k$ inches. The length of the rectangle is 8 inches longer than the width.

a) Find the length of the rectangle in terms of $k$.


The length of the rectangle is $\qquad$ inches.
b) What is the perimeter of the rectangle in terms of $k$.

$\qquad$ $+$ $\qquad$ $+$ $\qquad$ $+$ $\qquad$
$=$ $\qquad$ $+$ $\qquad$
$=$ $\qquad$

The perimeter of the rectangle is $\qquad$ inches.
c) If $k=3$, find the perimeter of the rectangle.

When $k=3$,

The perimeter of the rectangle is $\qquad$ inches.
2. Prince is $6 n$ years old. Jordan is $3 n+10$ years older than Prince.
a) Find Jordan's age.
b) Find the total age of Prince and Jordan.
c) Kimberly is 9 years younger than Prince. Find Kimberly's age.
d) Find the total age of the three people.
e) If $n=4$, find the total age of the three people.

Name: $\qquad$ Date: $\qquad$

Solve. Show your work.

## Example

Billy reads 30 pages of a novel each day.
a) If he continues to read the novel at this pace, how many pages can he read in $r$ days?


1 day $\rightarrow 30$ pages
$r$ days $\rightarrow \underline{r} \cdot \underline{30}=\underline{30}$ pages
Billy can read $30 r$ pages of the novel in $r$ days.
b) How many days will Billy take to read 15 r pages of the novel?

Evaluate this expression when $r=34$.


30 pages $\rightarrow 1$ day
$15 r$ pages $\rightarrow \underline{15 r} \div \underline{\frac{15 r}{30}}$ days
Billy will take $\frac{\frac{15 r}{30}}{\text { days to read } 15 r \text { pages of the novel. }}$
When $r=34, \quad \frac{15 r}{30}=\frac{15 \cdot 34}{30}$

$$
=\frac{510}{30}
$$

$$
=17
$$

Name: $\qquad$ Date:
3. Each pair of pants Andy buys costs $\$ 50$.
a) How much money does Andy need for $p$ pairs of pants?

1 pair of pants


1 pair of pants $\rightarrow \$ 50$

3 pairs of pants $\rightarrow$ $\qquad$ $\cdot$ $\qquad$ $=$ $\qquad$ dollars

Andy needs $\qquad$ dollars for $p$ pairs of pants.
b) How many pairs of pants can Andy buy with 10 p dollars? Evaluate this expression when $p=20$.

10p dollars

$\$ 50 \rightarrow 1$ pair of pants

10p dollars $\rightarrow$ $\qquad$ $\div$ $\qquad$ = $\qquad$ pairs of pants

Andy can buy $\qquad$ pairs of pants with $10 p$ dollars.

When $p=20$,

Name: $\qquad$ Date: $\qquad$
4. There are 15 students for every teacher in a school.
a) How many students are there if there are 10 m teachers?

1 teacher

b) How many teachers are there if there are 6 m students? Evaluate the expression when $m=20$.


Name: $\qquad$ Date:

## Solve. Show your work.

## Example

An apple has a mass of $2 v$ grams. A pear is 12 grams heavier than the apple. An orange is 3 times as heavy as the pear.
a) Find the total mass of the three fruits in terms of $v$.

Mass of the apple $=2 v$
Mass of the pear $=\frac{2 v}{}+\frac{12}{}$

$$
=\frac{2 v+12}{} \text { grams }
$$

Mass of the orange $=$ $\qquad$ . $\qquad$ $2 v+12$

$$
=6 v+36 \text { grams }
$$

$$
\begin{aligned}
\text { Total mass of the three fruits } & =2 v+\frac{2 v+12}{}+\frac{6 v+36}{} \\
& =\frac{2 v+2 v+6 v+12+36}{} \\
& =\frac{10 v+48}{} \text { grams }
\end{aligned}
$$

The total mass of the three fruits is $\quad 10 v+48$ grams.
b) If $v=5$, find the total mass of the three fruits.

When $v=5$,

Total mass of the 3 fruits $=10 v+48$

$$
=10.5+48
$$

$$
=50+48
$$

$$
=98 \text { grams }
$$

The total mass of the three fruits is
98 grams.

Name: $\qquad$
5. Nathan has 15 m dollars. He buys 2 bags and 3 books.

Each bag costs 2 m dollars. Each book costs $\$ 10$.
a) How much money does Nathan spend?

Cost of the 2 bags $=$ $\qquad$ $\cdot$ $\qquad$
$=$ $\qquad$ dollars

Cost of the 3 books = $\qquad$ - $\qquad$
$=\$$

Total cost $=$ $\qquad$ dollars

Nathan spends $\qquad$ dollars.
b) How much money does Nathan have left?
$\qquad$ - $\qquad$ $=$ $\qquad$ dollars

Nathan has $\qquad$ dollars left.
c) If $m=8$, how much money does Nathan have left?

When $m=8$,

Money left =
6. A rectangle has a perimeter of $16 p$ centimeters. It has a width of $2 p$ centimeters. Each side of an equilateral triangle is $\frac{1}{2}$ the length of the rectangle.
a) Find the length of the rectangle in terms of $p$.
b) Find the perimeter of the triangle in terms of $p$.
c) Find the total perimeter of the rectangle and the triangle if $p=8$ centimeters.
d) Alvin bought a wire that is 3 meters long. How many meters of wire is left after making both the rectangle and equilateral triangle shapes if $p=8$ ?

## Lesson 7.3

1. $p+p+p+p+p+p=\underline{6} \cdot p$

$$
=6 p
$$

In the term $6 \underline{p}$, the coefficient of $p$ is $\underline{6}$.
2. $n+n+n+13+8=\underline{3} \cdot n+13+8$

$$
=\underline{3 n}+21
$$

In the term $3 n$, the coefficient of $n$ is 3 .
3. $d+d+d+d+d+5-2$
$=\underline{5} \cdot d+3$
In the term $5 \underline{d}$, the coefficient of $d$ is $\underline{5}$.
4. $4 m, 4 m, 4$
5. $5 r, 5 r, 5$
6. Figure label: $d, d$;
$\underline{d}+\underline{d}+\underline{d}=\underline{3} \cdot \underline{d}$

$$
=\underline{3 d}
$$

The perimeter of the triangle is $\underline{3 d}$ inches.
7. Figure label: $m, 2$;
$\underline{m}+\underline{2}+\underline{m}+\underline{2}=\underline{2} \cdot \underline{m}+\underline{4}$

$$
=2 m+4
$$

The perimeter of the rectangle is $(2 m+4)$ feet.
8. Figure label: $h, h, h, h, h, h, h$; 8h centimeters
9. 7 g
11. 16 m
10. $11 p$
13. $43 d$
15. Not equivalent
17. Equivalent
19. $16 n$
21. $29 z$
23. Not equivalent
25. Equivalent
12. $20 y$
14. Equivalent
16. Not equivalent
18. $3 x$
20. 0
22. $14 b$
24. Equivalent
26. Not equivalent
27. $12 c-3 c-3 c=\underline{9 c}-3 c$

$$
=\underline{6 c}
$$

28. $5 j+2 j+9 j=\underline{7} \dot{j}+9 j$

$$
=\underline{16 j}
$$

29. $10 k$
30. $5 y$
31. $5 t+4+2 t=\underline{5 t+2 t}+\underline{4}$

$$
=\underline{7 t+4}
$$

32. $6 m-10-2 m-m$
$=\underline{6 m-2 m-m}-\underline{10}$
$=\underline{3 m-10}$
33. $12 r-12$
34. $9 j+3$
35. $2 y+2+2 y+2+5 y+5 y$
$=\underline{2 y+2 y+5 y+5 y}+\underline{2+2}$
$=(14 y+4)$
The perimeter of the triangle is
$(\underline{14 y+4)}$ centimeters.
36. $(5 d+36)$ inches

## Lesson 7.4

1. Figure label $\underline{4} \cdot \underline{g}, \underline{4} \cdot \underline{4} ;$
$4(g+4)=4 \cdot(g+4)$

$$
\begin{aligned}
& =4 \cdot g+4 \cdot 4 \\
& =\underline{4 g+16}
\end{aligned}
$$

2. $2 h+14$
3. $9 k-36$
4. $42 s+54$
5. $27 c-18$
6. Not equivalent
7. Equivalent
8. Equivalent
9. Not equivalent
10. The factors of $3 d$ are:
$1 \cdot 3 d$
3-1d
The factors of 9 are:
1 - 9
$3 \cdot \underline{3}$
$9 \cdot 1$
The common factor of $3 d$ and 9 is $\underline{3}$.
$3 d=\underline{3} \cdot \underline{d}$
$9=\underline{3} \cdot \underline{3}$
$3 d+9=\underline{3} \cdot \underline{d}+\underline{3} \cdot \underline{3}$
$=\underline{3(d+3)}$
11. $8(3 g+1)$
12. $7(3 b-1)$
13. $5(9 h+1)$
14. $6(9 z-1)$
15. Equivalent
16. Not equivalent
17. Not equivalent
18. Not equivalent
19. $6 p+2+4 p+13 p$
$=\underline{6 p}+\underline{4 p}+\underline{2}+\underline{13}$
$=\underline{10 p}+\underline{15}$
$=\underline{5(2 p+3)}$
20. $7(v+2)$
21. $3(17 a+19)$
22. $2(8 s+25)$

## Lesson 7.5

1. a) $2 k+8$
b) $\underline{6 k}+\underline{8}+\underline{2 k}+\underline{8}$
$=\underline{6 k+2 k}+\underline{8+8}$
$=8 k+16$
The perimeter of the rectangle is $(8 k+16)$ inches.
c) When $k=3$

$$
\begin{aligned}
8 k+16 & =8 \cdot 3+16 \\
& =24+16 \\
& =40
\end{aligned}
$$

The perimeter of the rectangle is $\underline{40}$ inches.
2. a) $(9 n+10)$ years
b) $(15 n+10)$ years
c) $(6 n-9)$ years
d) $(21 n+1)$ years
e) 85 years
3. a) 3 pairs of pants
$\rightarrow \underline{p} \cdot \underline{50}=\underline{50 p}$ dollars
Andy needs $50 p$ dollars for $p$ pairs of pants.
b) $10 p$ dollars
$\rightarrow \underline{10 p} \div \underline{50}$
$=\frac{10 p}{50}$ pairs of pants
Andy can buy $\frac{10 p}{50}$ pairs of pants with
$10 p$ dollars.
When $p=20$,

$$
\begin{aligned}
\frac{10 p}{50} & =\frac{10 \cdot 20}{50} \\
& =\frac{200}{50} \\
& =4
\end{aligned}
$$

4. a) 150 m students
b) $\frac{6 m}{15}$ teachers; 8
5. a) Cost of the 2 bags
$=\underline{2 m} \cdot \underline{2}$
$=\underline{\mathrm{m}}$ dollars
Cost of the 3 books
$=10 \cdot \underline{3}$
$=\$ \underline{3}$
Total cost $=\underline{(4 \mathrm{~m}+30)}$ dollars
Nathan spent $(4 m+30)$ dollars.
b) $\underline{15 m}-\underline{(4 m+30)}=\underline{(11 m-30)}$ dollars Nathan has $\underline{(11 m-30)}$ dollars left.
c) Money left $=\underline{11 m-30}$

$$
\begin{aligned}
& =11 \cdot 8-30 \\
& =\underline{88-30} \\
& =\$ \underline{58}
\end{aligned}
$$

Nathan has \$58 left.
6. a) $6 p$ centimeters
b) $9 p$ centimeters
c) 200 centimeters
d) 1 meter

